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as to the reliability of the theory, and cannot be justified 
in detail. The evaluation of A has been done from 
McKinley's calculation, which uses the "bipion" am­
plitude of De Tollis and Verganelakis.24 The result is 
consistent with previous estimates of A, which have 
been summarized in a separate paper describing meas­
urements we have made of the TT~/TT+ ratio for photo-
production from deuterium.25 

Summarizing the discussion, the measurements re­
ported here provide data of improved accuracy, con­
sistent with other experiments, and at present the 
interpretation is limited at least as much by theoretical 
uncertainty as by the experimental errors. 

APPENDIX: LIQUID TARGET DATA 

During the course of this experiment, measurements 
of the TT~/TT+ ratio from deuterium were made25 utilizing 

24 B. de Tollis and A. Verganelakis, Nuovo Cimento 22, 406 
(1961). 

25 J. Pine and M. Bazin (to be published). 

a liquid target and a beam swept free of electrons. By 
filling the target with hydrogen, the relative cross sec­
tions shown in Fig. 5 were obtained at a fixed labora­
tory angle of 47 cleg. Over the energy range studied, 
this angle is always within 2° of that defined by Baldin's 
kinematical condition. 

The same spectrometer and counters were used as 
for the solid target data. However, there was no carbon 
subtraction, no electroproduction, and a much lower 
flux of positrons into the spectrometer. In exchange for 
these advantages, the beam spot at the target was 
larger and the target itself constituted a rather ex­
tended source of pions. As a result, the arrangement 
lent itself best to the measurement of relative cross 
sections at a fixed laboratory angle, so that the spec­
trometer acceptance could safely be assumed to remain 
constant. The electron energy was also held fixed at 
239 MeV, to maintain a constant beam size. 

The errors in these data are mainly statistical, and 
the consistency with the solid target data is seen to be 
good. 
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It is shown that the width of a diffraction peak divided by i<r(s,t=0) cannot decrease faster at high 
energies than a constant times (Ins)-6. This follows from unitarity and analyticity in the largest Lehmann 
ellipse consistent with perturbation theory. 

THERE has been considerable interest lately in the 
behavior of diffraction peaks at high energies. In 

Fig. 1, we show a typical angular distribution1 <r(s,t) 

cr(s,t) 

FIG. 1. A typical an­
gular distribution <r(s,t) 
is shown. The width of 
the diffraction peak w is 
defined by the equation 
w=a(sfl)/l2d<T(s,0)/df\. 

slope = 

* The study was supported by the U. S. Air Force Office of 
Scientific Research Grant AF-AFSOR-62-542. 

1 See, for example, several papers in session H2 of the Proceedings 
of the 1962 Annual International Conference on High-Energy 
Physics at CERN (CERN, Geneva, 1962). 

plotted versus / the invariant four-momentum transfer. 
s is the square of the total center-of-mass energy, t is 
related to the center-of-mass three-momentum q and 
the scattering angle 6 by the relation t= —2g2(l — cos#). 
The physical scattering region is /<0. We set fi=c=l 
and measure all energies in units of the mass of the 
lightest particle involved in the scattering process. The 
width of a diffraction peak w is defined by 

2da(sfl)/dt 

We will prove that d<r(s,t)/dt (the slope of the angular 
distribution) is bounded from above by C(ln?)6, where 
C is a constant independent of s and /. From this it 
follows that the width divided by §o-(s,0) cannot de­
crease faster than a constant times (Ins)-6. 

In proving this result we will follow the method used 
by Greenberg and Low2 to set bounds on high-energy 
cross sections from analyticity in Lehmann ellipses. 

2 0. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961). 
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Precisely, we will now prove the theorem that if (a) 
unitarity is satisfied by requiring that |#z(V)|<l for 
all / and s; (b) the scattering amplitude T(s,z) is analytic 
in an ellipse in the complex z=cos0 plane with semi-
major axis a = c o s h a = 1 + (k2/2q2), where q is the center-
of-mass three-momentum and X a constant; and (c) 
\T(s,z)\<Ri(s) for z on any ellipse in the assumed 
region of analyticity where R\(s) is a fixed polynomial 
in s, then 

d<r{s,t)/dt<C[\nsJ, (1) 

where C is a constant independent of s and /. 
Condition (b) follows from assuming analyticity in 

the largest ellipse in the complex z plane consistent with 
known singularities appearing in perturbation theory. 
This ellipse is larger than the region of analyticity 
proven rigorously by Lehmann.3 For the case of pion-
nucleon scattering X equals twice the pion mass. Con­
dition (c) follows from the assumption that the T matrix 
is a tempered distribution and is analytic in the ellipse 
defined in (b). 

To prove the theorem we expand the T matrix in 
partial waves neglecting spin: 

T(s,z) = - • E ( 2 / -
I 

•l)at(s)Pi(.z). 

With this normalization of T we have 

a(s,t)=(r/^s)\T(s,z)\\ 

(2) 

(3) 

Furthermore, differentiating Eq. (3) with respect to 
t gives 

da(s,t) IT /dT* dT\ 2T 
= _ V T+T*—)<—\T\ 

dt q2s\ dt dt / q2s 

dT 

dt 
(4) 

Using the Legendre expansion given in Eq. (2) we have 

cl/2 

I T(s,z) | < — Z (21+1) | ai(s) | | P,(z) | , (5a) 
q i 

dT(s,z)\ s112 dz 
'<—S(2 /+ l ) |a , (* ) | -

q i dt dt 

dPi(z)\ 

dz ! 
(5b) 

We have used the analyticity of T in the ellipse to 
interchange the order of differentiation and summation 
in Eq. (5b). 

3 H . Lehmann, Nuovo Cimento 10, 579 (1958). 

Greenberg and Low2 and F'roissart4 have shown that 
(a), (b), and (c) are sufficient to prove that 

\ai(s)\<R(s)expl-a(q)f], (6) 

where R(s) is a fixed polynomial in s and cosh a = l 
+ (\2/2q2). For large q, <x~\/q. I n addition it is known 
that 

| J P I ( « ) | < 1 and \dPi(z)/dz\<il(f+l). (7) 

Following Froissart, we choose U so that for />Zo, 
\^i{s)\<\ is satisfied automatically because of Eq. (6); 
for KIQ we use the unitarity bound \ai(s)\<\. Then, 
using Eqs. (6) and (7), we find 

sll2h-i s112 

\T(s,z)\<— E (2l+l)+—R(s)T,(2l+l)<r"1, 
q i=o q z=Zj 

(8a) 

dT(s,z) 

dt 

s1'2 h-i 
<— Z | / ( I + 1 ) ( 2 / + 1 ) 

2qz i=o 

+—R(s)T,hKl+l)(2l+l)<r 
2<f i=h 

(8b) 

where h is the smallest integer larger than Z0 and 

/o=GT1 lnR(j) . (9) 

The sums in Eq. (8) can be evaluated in a straight­
forward manner. We find for large s 

\T(s,z)\<Ciqs^\nR(s)J, (10a) 

\dT(s,z)/dt\ <C 2^Dni?C*)] 4 . (10b) 

Inserting these bounds into Eq. (4) we obtain the result 

d<r(s,t)/dt< 2irCiC2llnR(s)J 

<C(ln?)6 . (11) 

This completes the proof of the theorem. 
We have thus shown that the width divided by 

i<r(s,0) must be greater than C~~l (In?)-6 for large s. We 
note in concluding that the Regge pole hypothesis leads 
to an asymptotic behavior for large s of the form d<r(sfi) 
/dt=CliLS. We, thus, see that the Regge shrinking is 
consistent with the theorem proven above. 
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J. D. Walecka for several stimulating discussions. 

4 M. Froissart, Phys. Rev. 123, 1053 (1961). 


